Dynamical spectrum for scalar parabolic equations
نویسندگان
چکیده
منابع مشابه
Dynamics of Almost Periodic Scalar Parabolic Equations
The current paper is devoted to study of the asymptotic behavior of bounded solutions for the following type of parabolic equation: u t = u xx + f (t, x, u, u x), t > 0, 0 < x < 1, (1.1) with the boundary conditions: βu(t, 0) + (1 − β)u x (t, 0) = 0, βu(t, 1) + (1 − β)u x (t, 1) = 0, t > 0, (1.2) where β = 0 or 1, f : IR 1 × [0, 1] × IR 1 × IR 1 → IR 1 is C 2 , and f (t, x, u, p) with all its p...
متن کاملCoupling the Stokes and Navier-Stokes equations with two scalar nonlinear parabolic equations
© SMAI, EDP Sciences, 1999, tous droits réservés. L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce...
متن کاملSpectrum and amplitude equations for scalar delay-differential equations with large delay
The subject of the paper are scalar delay-differential equations with large delay. Firstly, we describe the asymptotic properties of the spectrum of linear equations. Using these properties, we classify possible types of destabilization of steady states. In the limit of large delay, this classification is similar to the one for parabolic partial differential equations. We present a derivation a...
متن کاملfor parabolic partial differential equations
number of iterationsrequired to meet the convergencecriterion. the converged solutions from the previous step. This significantly reduces the interfacial boundaries, the initial estimates for the interfacial flux is given from scheme. Outside of the first time step where zero initial flux is assumed on all between subdomains are satisfied using a Schwarz Neumann-Neumam iteration method which is...
متن کاملInverse problems for parabolic equations
Let ut −∇2u = f(x) := ∑M m=1 amδ(x− xm) in D × [0,∞), where D ⊂ R3 is a bounded domain with a smooth connected boundary S, am = const, δ(x− xm) is the delta-function. Assume that u(x, 0) = 0, u = 0 on S. Given the extra data u(yk, t) := bk(t), 1 ≤ k ≤ K, can one find M,am, and xm? Here K is some number. An answer to this question and a method for finding M,am, and xm are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2000
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036810008840862